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a b s t r a c t

This report continues our probe of the fundamental properties of elementary psychological processes.
In the present instance, we first distinguish between descriptive and state–space based parallel race
models. Then we show, engaging previous results on stochastic dominance in Theorem 1, that
descriptive race models can be designed that predict either faster ‘right’ channels or faster ‘wrong’
channels. Moving to state–space based models and in particular, to inhomogeneous Poisson counter
models, we use Theorem 1 to prove Theorem 2 which offers sufficient conditions for such models
to elicit faster ‘rights’ than ‘wrongs’. Then, constraining ourselves to models possessing proportional
processing rates, we revisit an important finding by Smith and Van Zandt (2000) to the effect that in
such models, mean processing times conditional on ‘right’ decisions are faster than those conditional on
‘wrong’ decisions. Theorem 3 expands that property to the much stronger level of ordered conditional
distribution functions. The penultimate section constructs an example of an inhomogeneous Poisson
race model that predicts faster ‘wrongs’ for fast processing times but faster ‘rights’ for slower
processing times. We leave as an open problem the question of whether there exist inhomogeneous
Poisson race models where ‘wrongs’ are stochastically faster than ‘rights’ for all durations of processing.

© 2020 Elsevier Inc. All rights reserved.

Most mathematical modeling takes place as follows: Theo-
rists and their colleagues construct a model based on specific
parameterized stochastic processes or probability distributions.
Then they or subsequent researchers conduct experiments which,
according to the tenets of the model, produce data which test
the model’s predictions. This strategy often requires model fits
and resulting goodness-of-fit statistics. A rather different style of
theorizing proceeds by the theorist investigating properties of en-
tire sets of models (e.g., Marley, 1971), mathematically qualitative
methodologies that uncover essential, but non-parametric, char-
acteristics of cognitive processes (Bamber, 1969; Dunn & Kalish,
2018; Townsend, 1990) or classes of models obeying some set of
precepts, seeking broad properties, to be evidenced in data, that
may distinguish two or more opposing such large sets of models
(e.g., Houpt, Townsend, & Jefferson, 2017; Townsend, Wenger, &
Houpt, 2018).

The first strategy has the potential advantage that if a model
is ‘true’ (or the closest real-life approximation to truth), and it
wins the fit contest, then in principle we are done, accompanied
by a new ‘law’ in science. Of course, the formidable repository of
major and widespread instances of model mimicking (e.g., Jones
& Dzhafarov, 2014; Khodadadi & Townsend, 2015; Townsend,
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1972) already cautions against taking this task lightly. But even
beyond that significant general challenge, a specific pitfall is
the danger of picking a winner based on specific distributions
instead of deeper psychological principles in which scientists are
most interested. For example, different hypothetical assumptions
concerning the base time can affect the diagnosticity of model
selection tools (Townsend & Honey, 2007) and parameter-fitting
of a massive amount of choice models (Ratcliff & Tuerlinckx,
2002). Other examples include the observation by Heathcote and
Love (2012) that rates and decision thresholds cannot be distin-
guished when the distribution is lognormal. Thus, a valuable by
product of the last mentioned approach is that it encourages the
theorist to investigate foundational characteristics of the model
classes, which can lead to a deeper comprehension of the relevant
dynamics of the competing model types.

Of course, these courses of action are by no means mutually
exclusive and they may be and often are, intermingled at various
stages of the theoretical enterprise. In fact, we have prescribed
an early emphasis on the former to disconfirm large classes of
models which embody one position while tentatively affirming
its opposition and subsequently move to narrower parameterized
models belonging to the affirmed class. This has been referred
to as the ‘‘sieve approach’’ to modeling. In any event, it can
be instructive to keep the distinction in mind. The present en-
deavor falls into the second camp. A great deal of our theoretical
endeavors has focused on simple architectures and particularly
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parallel vs. serial processes and how to test them against one
another through, when feasible, distribution and parameter-free
predictions (e.g., Algom, Eidels, Hawkins, Jefferson, & Townsend,
2015; Townsend et al., 2018). In other instances, we simply
study fundamental properties of these and similar issues (e.g.,
Balakrishnan, 1994; Houpt et al., 2017; Townsend & Diederich,
1996; Zhang, Liu, & Townsend, 2019). Another issue in response
time theory, methodology and practice is error-free (or essentially
error-free) vs. measures that include accuracy as well as response
times. This investigation is found in the latter domain.

Most stochastic models that can predict errors vs. corrects, or
rights vs. wrongs as we will name them in this project, assume
that information processing proceeds until a criterion is reached
that then produces a decision and response of some kind. Despite
our use of right and wrong, our findings readily apply to arbi-
trary preference situations (e.g., Marley & Colonius, 1992). These
criterion models are often called accumulator models. That term
originally referred to a specific model studied by Smith and Vick-
ers (1988). Since most examples, for instance, diffusion processes,
are associated with specific distributional assumptions, we earlier
introduced the name accrual halting models to include all such
models (Townsend, Houpt, & Silbert, 2012). Another reason for
the new term is to emphasize that reaching a criterion or decision
threshold stops processing. There exist models which can accu-
mulate information, but the stopping process is not governed by
hitting a criterion. A dynamic extension of General Recognition
Theory by F.G. Ashby is a good example of this class (Ashby,
2000). In his model, there is a processing trajectory in a pattern
space which ends at some point in the space. The decision is
made according to the ‘landing spot’ and the response time is
determined by the distance of that spot from the nearest decision
bound, the so-called ‘‘response time distance hypothesis’’. But all
these models assume some sort of state–space that indexes the
accrual of information. However, there is a literature, associated
especially with multi-sensory-modality perception which utilizes
only the notion of the completion time distributions, without
reference to underlying state spaces (e.g., Colonius, 1990; Miller,
1978). We call this type of model a ‘‘descriptive model’’. This
distinction will be important in our developments.

Townsend andWenger (1996) have proposed a class of models
termed evidence monitoring models which assume that while ac-
cumulating evidence, the observer possesses a monitor capable
of assessing the rate (or amount) of evidence accrual. If the
evidence accrual is sufficiently fast or efficient, such processing
continues until a decision bound is reached. But, if the accrual is
not proceeding sufficiently fast or efficiently, accumulation can
cease and a decision can be made on the basis of the accrued
information. An analogous model has been proposed by Hawkins
and colleagues (Hawkins, Mittner, Forstmann, & Heathcote, 2019)
which poses a race between accrual and a guessing process,
which would in effect be a special and important case of evidence
monitoring theory.

One of the most fundamental characteristics of stochastic
models of choice is the issue of whether right responses are
faster or slower, or equal, to wrong responses. Empirical evi-
dences have been sustainably found that ‘wrong’ responses could
be sometimes faster or slower than ‘right’ responses, for in-
stance in visual discrimination tasks where discriminations are
easier (e.g., Swensson, 1972) and in certain motion discrimi-
nation paradigms (e.g., Ratcliff & McKoon, 2008). The famous
sequential probability ratio test model, though appealing on many
dimensions, is notorious for predicting equal RTs for the two
decisions (Laming, 1973; Ratcliff, 1978; Stone, 1960; Townsend
& Ashby, 1983). Various strategies can be engaged to surmount
this conundrum. For instance, by implementing the moment
generating function for increments to the random walk, response

conditioned mean times of ‘right’ and ‘wrong’ were no longer
forced to be equal (Link & Heath, 1975). Ditterich developed a
time-variant version of the diffusion model allowing a gain of
the sensory signals to increase over time which can account for
longer error response times (Ditterich, 2006a, 2006b). The best
known, due to Ratcliff and colleagues (Ratcliff, 1978; Smith &
Ratcliff, 2004), has been to install distributions on the drift rate
and the starting point or, equivalently, the decision criteria (e.g.,
Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). The resulting
probability mixtures can deliver either faster ‘rights’ or faster
‘wrongs’.

Current accrual halting models which assume right and wrong
information is accrued simultaneously, tend to take the form of
either a parallel race among the n possibilities (e.g., Smith &
Van Zandt, 2000; Townsend & Ashby, 1983), or a random walk
or diffusion process (e.g., Busemeyer & Townsend, 1993; Link &
Heath, 1975; Ratcliff, 1978), though the preponderance has been
with the latter tack. On the other hand,descriptive race models, as
mentioned above, are formulated simply as a distribution on the
minimum processing time (e.g., Audley, 1973; Bundesen, 1990;
Colonius, 1990; Colonius & Vorberg, 1994; Marley & Colonius,
1992; Raab, 1962; Townsend & Ashby, 1983).

The first, descriptive case is depicted in Fig. 1a which shows
the wrong process winning thus producing an error. The second
accrual halting type, seen in Fig. 1b, exhibits a more detailed
account based on a race between two Poisson counters with the
same decision threshold. Both can contribute to our knowledge
of psychological systems and both will, indeed, play a role in
the present investigation. We also observe before proceeding that
random walk and diffusion models can be viewed as a limiting
case of parallel channels which interact in a mutually inhibitory
fashion (e.g., Colonius & Townsend, 1997).

The present focus will be on parallel, minimum-time models,
in the usual sense where the channels are in a race to the finish,
and it will be further assumed that: 1. The parallel channels are
stochastically independent. 2. One channel is operating on the
‘wrong’ input. One channel is operating on the ‘right’ input. 3.
The winner of a race determines the choice and response. 4. It
will always be assumed that the ‘right’ stimulus is processed at
a faster rate (to be made precise subsequently) than the ‘wrong’
stimulus. 5. Both channels have the same response criterion so
there is no response bias assumed here. 6. There are very few
actual applications of these models to n > 2 and we shall
concentrate on n = 2, but the simplicity of independent race
models suggests ready generalization of our results.

Now, let T = processing time and let t be a specific value
of T . Notations of symbols that are utilized in the rest of paper
are summarized in Table 1. With respect to independent races,
our present targeted models, it might be intuitively conjectured
that because ‘rights’ have to be faster than ‘wrongs’ in order
that P(R) > 1

2 , processing time conditioned on ‘right’ responses
will also be faster in the usual experimental sense: P(T ≤ t|R).
However, our theoretical inquiry uncovers the rather astonishing
result that stochastic race models need not, in fact, force this
result.

Moreover, we also probe another essential characteristic of
information processing: Whether in independent race models,
the probability of being ‘right’ conditional on the processing time
t , increases as a function of t or not. That is, is P(R|t) an increasing
function of t? As it happens, this property, like that of whether
‘wrongs’ are always slower in a stochastic sense, than ‘rights’,
is not always true. That is, there exist independent race models
where P(R|t) is a decreasing function of t .

We next have to decide at what level to formulate our in-
vestigation. For instance, if ‘rights’ are faster than ‘wrongs’, at
what level does that occur (see e.g., Townsend, 1990; Townsend &



J.T. Townsend and Y. Liu / Journal of Mathematical Psychology 97 (2020) 102360 3

Table 1
Summary of notations.
Symbols Meaning

T A random variable of total processing time
t A numerical value of T that is nonnegative
i a specific response taking values of either R = right or W = wrong .
Ti A random channel processing time
P(T ≤ t|i) The cumulative distribution function of processing time conditional on response i
P(i|t) Probability of being ‘right’ or ‘wrong’ conditional on a specific value of total processing time
E(T |i) Mean of the processing time conditional on ‘right’ or ‘wrong’
gi(t) Probability density function of channel processing time for ‘right’ or ‘wrong’
hi(t) Hazard function of channel processing time
r(t) Ratio of hazard functions of channel processing time
h(t|i) Hazard function of total processing time conditional on response

Fig. 1. (a) An example of race model where the ‘wrong’ signal has been input
and ‘wrong’ wins. (b) An example model of two Poisson counters where ‘wrong’
hits the criterion = 10 first and produces an error response. t has arbitrary unit.

Ashby, 1978)? Perhaps the ordering only holds for mean RTs, that
is for, say E(T |R) vs. E(T |W ) (where E, the expectation operator,
is equivalent to the arithmetic mean). Knowledge at this level is
quite useful of course, but it would be of import to explore the
possibility of statistical orderings at stronger levels. For instance,
Townsend (1990) argues that finding an ordering say, such that
P(T ≤ t|R) < P(T ≤ t|W ) (or vice versa) makes a much stronger
statement about nature than a finding only at the level of means,
and in fact, it happens that the former order implies a ordering
of the means as well as the medians. In point of fact, we will
demonstrate that descriptive race models exist that can predict
either faster processing times when conditioning on ‘wrongs’
than when conditioning on ‘rights’ or the opposite. Similarly,
these results are attained at a strong level in the Townsend (1990)
scheme, even while maintaining the postulate that rights have to
win the race more than half of the time. Theorem 1 will prove
this assertion and, in the process, illustrate how hazard functions
govern the relative speeds of the two channels.

After dealing only with the minimum time statistic of two
independent distributions, we expand our purview to analyze ac-
crual halting channels interpretation of the race. An especially im-
portant set of such models, still quite general, is that founded on
inhomogeneous Poisson counters, which emphasizes the count-
ing process or, equivalently, inhomogeneous Gamma processes
for the completion times. This type of model was thoroughly
investigated by Smith and Van Zandt (2000). Here, each intercom-
pletion time (Townsend & Ashby, 1983, duration between two
successive completions; see, e.g.,) is distributed by a generalized
exponential where the rate is itself a function of time. Moreover,
there is a special subclass of this kind of model wherein the pro-
cessing (i.e., counting) rates are proportional. In our context, this
would mean that the ‘right’ gamma rates are proportional to the
‘wrong’ rates. Smith and Van Zandt (2000) made the important
discovery that proportional-rates, inhomogeneous, right–wrong
race models predict that the mean processing times, conditional
on being ‘right’ are inevitably faster than those conditional on
being ‘wrong’. With that prediction in mind, our Theorem 2
moves ahead to construct sufficient conditions for ‘right’ pro-
cessing times to be faster than ‘wrong’ processing times in the
stronger sense that the probability that a ‘right’ finishing time is
faster than some arbitrary time t , will always be greater than the
likelihood that a ‘wrong’ finishing time will be faster than that
time t .

More critically, when we specialize to the class explored by
Smith and Van Zandt (2000), we discover from Theorem 3 that
proportional-rates, inhomogeneous Gamma race models (that is,
the same category for which Smith and Van Zandt proved their
results for the conditional mean processing times) fulfill the
sufficient conditions of Theorem 2. Therefore, they always elicit
faster ‘rights’ than ‘wrongs’ at the strong distributional level of
that theorem. Thus, we determine that, indeed, at least race
models of a certain general breed, are inclined to predict faster
‘rights’ than ‘wrongs’ and that at a quite robust stochastic echelon,
thereby fortifying and expanding the Smith and Van Zandt (2000)
conclusions.

In short, the approach we take in this paper is first explor-
ing the principle of conditioned processing times of ‘right’ and
‘wrong’ with a broad class of race models that are free of any dis-
tributional assumption (see Theorem 1), that is descriptive race
models. Then, we examine these general findings with a subclass
of race models that involve time-varying Poisson counting pro-
cesses (see Theorem 2), and finalize our theoretical exploration
with a special case of this Poisson counting model assuming
proportional counting rates (see Theorem 3).

The characteristics of our broad class of race models, as given
informally above, can be taken as axioms and are not put down
formally since they are so well-known and accepted. However,
we should state an important further assumption. As given in
Townsend (1990), ‘rights’ decisions could be faster or slower than
‘wrong’ decisions at a number of hierarchical stations. So, we first
require an axiom on hazard functions to ensure that more ‘rights’
are made than ‘wrongs’.
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1. Axiom on hazard functions of right vs. wrong channels

Let the hazard function for the ‘wrong’ channel be hW (t) =

gW (t)/GW (t), where gW (t) is the probability density function on
‘wrong’ processing times, GW (t) = 1−GW (t) and GW (t) is the cu-
mulative distribution function on ‘wrong’ processing times. GW (t)
is just the so-called survivor function of the channel processing
time. Similarly, the hazard function for the ‘right’ channel is
hR(t) = gR(t)/GR(t) with the analogous interpretation. Then we
assume that hR(t) > hW (t), for all t ≥ 0.

The consequent lemma insures that the ‘rights’ frequency
exceeds the number of ‘wrongs’.

Lemma 1. Because hR(t) > hW (t), it follows that P(R) > P(W ).

Proof. See Townsend (1990). □

Again, from the discussion above, one might intuit that be-
cause ‘right’ channels operate more speedily than ‘wrong’ chan-
nels, that conditioning on a ‘right’ decision would always find
these faster than ‘wrong’ decisions. This intuition would be mis-
guided as we shall shortly bear witness.

In fact, it intriguingly turns out that the behavior of the ratios
of the hazard functions over time determines whether ‘rights’
win the race faster than ‘wrongs’ as we see in the following
theorem. From here on out, we will use the expression strictly
increasing (or decreasing) to mean strictly monotonically increasing
(or decreasing). We will also need the new conditional, winning
vs. losing, densities f (t|R) = P(TR = t ≤ TW |R) =

gR(t)GW (t)
P(R) and

f (t|W ) = P(TW = t ≤ TR|W ) =
gW (t)GR(t)

P(W ) . Similarly, we can
readily determine the respective ‘right’ and ‘wrong’ conditional
hazard functions to be h(t|R) =

f (t|R)
F (t|R)

and h(t|W ) =
f (t|W )
F (t|W )

, where
F (t|R) and F (t|W ) are cumulative distributions of total processing
time conditional on ‘right’ and ‘wrong’, respectively. The reader
will notice that in a felicitous manner, the terms P(R) and P(W )
cancel in the hazard functions so that h(t|R) =

gR(t)GW (t)∫
∞

t gR(s)GW (s)ds
and

h(t|W ) =
gW (t)GR(t)∫

∞

t gW (s)GR(s)ds
.

Theorem 1. Consider the ratio of the terms ‘right’ wins the race
at time t vs. ‘wrong’ wins the race at time t: r(t) =

gR(t)/GR(t)
gW (t)/GW (t)

=

gR(t)GW (t)
gW (t)GR(t)

. If r(t) strictly decreases, then errors are stochastically
slower than corrects in the sense that P(T ≤ t|R) > P(T ≤ t|W ). But
if it strictly increases, then the reverse ordering occurs. Observe that
r(t) is also the ratio hR(t)

hW (t) , that is the ratio of the ‘right’ to ‘wrong’
hazard functions.

Proof. P(T ≤ t|R) =
∫ t
0

gR(s)GW (s)
P(R) ds = F (t|R) is the conditional

cumulative distribution on ‘right’ ; whereas P(T ≤ t|W ) =∫ t
0

gW (s)GR(s)
P(W ) ds = F (t|W ) is the conditional cumulative distribution

on ‘wrong’. We first consider the case when r(t) is monotonically
decreasing. Following the method used in Townsend and Ashby
(1983), we have

r(t)
∫

∞

t
gW (s)GR(s)ds >

∫
∞

t
r(s)gW (s)GR(s)ds

r(t)gW (t)GR(t)
∫

∞

t
gW (s)GR(s)ds > gW (t)GR(t)

×

∫
∞

t
r(s)gW (s)GR(s)ds

r(t)gW (t)GR(t)∫
∞

t r(s)gW (s)GR(s)ds
>

gW (t)GR(t)∫
∞

t gW (s)GR(s)ds

gR(t)GW (t)∫
∞

t gR(s)GW (s)ds
>

gW (t)GR(t)∫
∞

t gW (s)GR(s)ds
h(t|R) > h(t|W )

Since the conditional hazard functions of ‘right’ and ‘wrong’ are
ordered, by Proposition 8 in Townsend (1990), it follows that
F (t|R) > F (t|W ), which is equivalent to P(T ≤ t|R) > P(T ≤ t|W ).

Following similar logic, it is clear to see that when r(t) is
monotonically increasing, then P(T ≤ t|R) < P(T ≤ t|W ). □

Corollary 1.1. In the event that r(t) decreases, then ‘rights’ are
faster than ‘wrongs’ in the sense that P(T ≤ t|R) > P(T ≤

t|W ) and also the mean and median processing time for ‘rights’
are smaller than those for ‘wrongs’. Conversely, if r(t) increases,
‘wrongs’ are faster than ‘rights’ at the distributional level as well as
the conditional means and medians level.

Proof. Proposition 4 in Townsend (1990) states that the ordering
on cumulative distributions implies the same ordering at mean
and median levels. Since the monotonicity of r(t) implies ordered
conditional cumulative distributions here, it thereby ensures this
conclusion. □

The behavior of ‘rights’ being faster than ‘wrong’ may seem
somewhat pedestrian given the earlier, even if misguided, intu-
ition. It is more intriguing to discover rather elementary distribu-
tions that actually produce faster ‘wrongs’ than ‘rights’. In fact, we
can unearth quite simple examples of either behavior within the
class of hazard functions defined as affine functions of time. That
is, h(t) = at + b. Note that this simple function can be viewed
a very special case of inhomogeneous (time varying) gamma
processes, since the time-varying rate is just the hazard function
h(t), for an intercompletion time in such a stochastic process. The
family density function is then simply g(t) = (at + b)e(

−at2
2 +bt).

We begin with the mundane set of circumstances where r(t)
decreases, which elicits faster ‘rights’. Suppose hR(t) = 4t + 2.1
while hW (t) = 2t + 1. Notice that hR(t) > hW (t) as expected and
then calculate the first derivative of the ratio function: dr(t)

dt =
−0.2

(2t+1)2
which is always negative for t ≥ 0. Thus, r(t) is strictly

decreasing. Fig. 2a shows the associated density functions. Fig. 2b
shows r(t). Fig. 2c reveals the two conditional hazard functions
and Fig. 2d shows the difference of conditional functions with
respect to t: P(T ≤ t|R) − P(T ≤ t|W ).

Next, take the new hazard functions hR(t) = (7t + 2) >
hW (t) = 3t + 1. Again, ‘rights’ are more frequent than ‘wrongs’
but now r(t) increases thus certifying that ‘wrongs’ are now faster
than ‘rights’. Fig. 3a, b, c, d graph the functions corresponding to
those in Fig. 2, therefore illustrate the opposite kind of behavior
from the case where r(t) decreases.

The last result of this section fulfills the earlier promise to shed
some light on P(R|t) which we exhibit in Corollary 1.2. The reader
may be mildly shocked, as we were, to see how similar all the
distributional characteristics look, except for the likelihood ratio
and the difference in conditional distribution functions.

Corollary 1.2. If r(t) decreases, then P(R|T = t) decreases as a
function of t and if r(t) increases, P(R|T = t) increases as a function
of t.

Proof.

P(R|T = t) =
P(R, T = t)
P(T = t)

=
gR(t)GW (t)

gR(t)GW (t) + gW (t)GR(t)

=
1

1 +
1

r(t)
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Fig. 2. (a) Density functions of RTs for ‘right’ and ‘wrong’ channels. (b) Decreasing ratio of hazard functions, r(t) =
hR(t)
hW (t) . (c) Correspondent hazard functions of

‘right’ and ‘wrong’ channels. (d) Difference of conditioned distributions: P(T ≤ t|R) − P(T ≤ t|W ). Notice that differences are above zero for t > 0, indicating that
‘wrong’ responses are stochastically slower than ‘right’ responses.

The finding ensues that P(R|t) moves in the direction of r(t) with
respect of t . □

Thus, we have an intriguing conjoining of predictions: If the
likelihood of being right grows with t (r(t) is increasing) then
wrongs should be faster than rights and if being right declines
with t (r(t) decreases over time) then rights are predicted to
be faster than wrongs. It would be of interest to probe this
connection with other models, for example, diffusion processes.
Smith (personal communication, 2020) derived the equations of
conditional accuracy functions on current state for Wiener pro-
cess. Results show that when there is cross-variability in drift
rates, the conditional probability of accuracy decreases with t;
whereas when drift rates are not cross-trial varied, probabilities
of conditional accuracy are independent of t . His results would
correspond to what might occur if we conditioned on number of
counts in the two channels at an arbitrary time. This path could
be quite interesting but lies beyond our present scope.

2. Race models based on time inhomogeneous Poisson rates,
proportional rates models, and standard gamma races: Faster
rights, slower wrongs

Poisson counting models with their twin processing time
distributions, the gamma waiting time densities, have histor-
ically been highly popular among theorists (e.g., Luce, 1986;
McGill, 1963; McGill & Gibbon, 1965; Smith & Van Zandt, 2000;
Townsend & Ashby, 1983). The general gamma distributions,
elicited by letting the processing rates differ among channels or
items have also proven valuable though not so prevalent as the
ordinary variety (e.g., Colonius & Vorberg, 1994; McGill, 1963;
Townsend & Ashby, 1983).

As noted earlier, a different strategy of generalization of de-
scriptive and predictive power can be brought to bear by let-
ting processing rates vary across time, thus evoking the class
of time-dependent (or inhomogeneous) Poisson processes, again
with their twins, the time-varying (also called inhomogeneous)
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Fig. 3. (a) Density functions of RTs for ‘right’ and ‘wrong’ channels. (b) Increasing ratio of hazard functions, r(t) =
hR(t)
hW (t) . (c) Correspondent hazard functions of ‘right’

and ‘wrong’ channels. (d) Difference of conditioned distributions: P(T ≤ t|R) − P(T ≤ t|W ). Notice that differences are below zero for t > 0, indicating that ‘wrong’
responses are stochastically faster than ‘right’ responses.

Gamma distributions. Of course, the classical special case for this
class resides in the standard gamma process. Smith and Van Zandt
(2000) contributed a landmark study on time-dependent Poisson
processes. One of their many findings was on the important
special case where the ‘right’ channel’s rate parameter is pro-
portional to the ‘wrong’ channel’s rate parameter. That is, R(t) =

αW (t), with α being a number greater than 1. Then, they proved
that ‘rights’ are faster than ‘wrongs’ at the conditional mean
processing time level. Our next demonstration enlists sufficient
conditions to deliver the stronger stochastic ordering on condi-
tional hazard functions for general time-varying Poisson counter
processes. As above, this exercise leads to the strong stochastic
relationship: P(T ≤ t|R) > P(T ≤ t|W ), that is, it is always more
likely that ‘rights’ finish faster than ‘wrongs’.

Although in some sense, the next finding is a corollary of
Theorem 1, because we deem it sufficiently valuable, we grace

it with the designation ‘theorem’. The targeted models are those
within the class of general inhomogeneous Gamma processes. Let
R′(t) be the time-derivative of R(t) and W ′(t) the time derivative
of W (t).

Theorem 2. Let W (t) be the time-variable rate parameter for the
‘wrong’ channel and R(t) be the time-variable rate parameter for
the ‘right’ channel. Let k stages be required for a decision on either
channel . Next assume following Axioms hold: 1. R′(t) > W ′(t) > 0.
2. R(t)

W (t) is decreasing in t. 3. R
′(t)

W ′(t) is decreasing in t. 4. R′(t)
W ′(t) >∑k−1

j=0
Rj(t)
j!

∑k−2
i=0

Wi(t)
i!∑k−1

j=0
Wj(t)

j!
∑k−2

i=0
Ri(t)
i!

. Then by Theorem 1, ‘rights’ are stochastically

faster than ‘wrongs’.

Proof. Define the probability density function of the time-varying
Poisson process for the ‘wrong’ and ‘right’ channels as following
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Smith and Van Zandt (2000):

gW (t) =
W (t)k−1W ′(t)e−W (t)

(k − 1)!

gR(t) =
R(t)k−1R′(t)e−R(t)

(k − 1)!

(1)

Define the survivor function of the time-varying Poisson pro-
cess for the ‘wrong’ and ‘right’ channels as following Smith and
Van Zandt (2000):

GW (t) =

k−1∑
j=0

W (t)j

j!
e−W (t)

GR(t) =

k−1∑
j=0

R(t)j

j!
e−R(t)

(2)

Then,

r(t) =
gR(t)GW (t)

gW (t)GR(t)

=
R(t)k−1R′(t)e−R(t) ∑k−1

j=0
W (t)j

j! e−W (t)

W (t)k−1W ′(t)e−W (t)
∑k−1

j=0
R(t)j
j! e−R(t)

=
R(t)k−1R′(t)

∑k−1
j=0

W (t)j
j!

W (t)k−1W ′(t)
∑k−1

j=0
R(t)j
j!

(3)

We employ the differentiation product rule to show that Axioms
1, 2, 3 are sufficient to prove the claim. Given Axioms 1, 2, 3,
R(t)k−1R′(t)

W (t)k−1W ′(t)
is decreasing as t increases. Given Axiom 4, we have

d[
∑k−1

j=0
Wj(t)

j!∑k−1
j=0

Rj(t)
j!

]

dt

=

k−1∑
j=0

Rj(t)
j!

W ′(t)
k−2∑
i=0

W i(t)
i!

−

k−1∑
j=0

W j(t)
j!

R′(t)
k−2∑
i=0

Ri(t)
i!

= W ′(t)
k−1∑
j=0

k−2∑
i=0

Rj(t)
j!

W i(t)
i!

− R′(t)
k−1∑
j=0

k−2∑
i=0

W j(t)
j!

Ri(t)
i!

< 0

Thus,
∑k−1

j=0
W (t)j

j!∑k−1
j=0

R(t)j
j!

decreases as t increases.

Combining the above results, Axioms 1, 2, 3 and 4 ensure that
r(t) is a decreasing function of t . According to Theorem 1, we
can conclude that such time-varying Poisson process produces
stochastically faster ‘rights’ than ‘wrongs’. □

Satisfying the inequalities in Theorem 2 therefore generates
stochastic dominance in processing times of ‘rights’ vs. ‘wrongs’.
The particular case of inhomogeneous Gamma processes where
the ‘right’ rates (as functions of time) are proportional to the
‘wrong’ rates of especial interest (e.g., Cox, 1972; Lappin & Erik-
sen, 1966; Smith & Van Zandt, 2000; Wenger & Townsend, 2000).
Smith and Van Zandt (2000) found that, for these models, the
assumption of R(t) = αW (t), α > 1 was sufficient to elicit
the results that, letting T be the random variable designating
processing time, E[T |R] < E[T |W ]. Our assumptions are more
stringent as is visible in the axioms of Theorem 2. However,
in the special case of inhomogeneous Gamma processes with
proportional rates, we acquire Axioms 1, 2, 3 free so to speak so
we only need to prove that essential Axiom 4 is true. But this
stipulation is then reduced to that of Smith and Van Zandt (2000).

Hence, because we can then demonstrate the veracity of Axiom
4 in the next theorem, we learn that their assumption forces
shorter processing time of ‘rights’ over ‘wrongs’ at a considerably
stronger stochastic level.

Theorem 3. Consider the proportional rates inhomogeneous Poisson
counting models with Gamma distributions. Then we proceed to
show that if Axioms 1, 2, 3 of Theorem 2 hold–then the critical Axiom
4 holds.

Proof. Recall the operative formula: r(t) =
gR(t)GW (t)
gW (t)GR(t)

which must
be demonstrated to decrease when interpreted as an inhomoge-
neous Gamma process. We see that for a time-varying Poisson
counting model with decision criterion of k stages (Eq. (3)): r(t) =

gR(t)GW (t)
gW (t)GR(t)

= [
R′(t)
W ′(t) ][

Rk−1(t)
W k−1(t)

[
e−R(t) ∑k−1

j=0
Wj(t)e−W (t)

j!

e−W (t) ∑k−1
j=0

Rj(t)e−R(t)
j!

]].

After canceling the exponential terms, by the product rule, we
now show that, given proportional processing rates R(t) = αW (t),
the Axioms 1, 2, 3 will suffice to ensure Axiom 4 holds and thus
Theorem 1 is in force.

d[
∑k−1

j=0
Wj(t)

j!∑k−1
j=0

Rj(t)
j!

]

dt

=

k−1∑
j=0

Rj(t)
j!

W ′(t)
k−2∑
i=0

W i(t)
i!

−

k−1∑
j=0

W j(t)
j!

R′(t)
k−2∑
i=0

Ri(t)
i!

= W ′(t)
k−1∑
j=0

k−2∑
i=0

Rj(t)
j!

W i(t)
i!

− R′(t)
k−1∑
j=0

k−2∑
i=0

W j(t)
j!

Ri(t)
i!

and now introducing the proportional rates, R(t) = αW (t), where
we assume as usual R(t),W (t) > 0, for t ≥ 0 (as well of course
as Axioms 1, 2, 3), α > 1. Then above equation turns to be

W ′(t)[
k−1∑
j=0

k−2∑
i=0

αjW i+j(t)
j!i!

− α

k−1∑
j=0

k−2∑
i=0

αiW i+j(t)
j!i!

] (4)

Next it is useful to set i + j = m and separately consider two
cases; case I: m ≤ k − 2; case II: k − 1 ≤ m ≤ 2k − 3.

Case I: let i + j be equal to arbitrary m, m ≤ k − 2.

(4) = W ′(t)[
m∑

x=0

αxWm(t)
(x)!(m − x)!

− α

m∑
y=0

αm−yWm(t)
(m − y)!(y)!

]

= W ′(t)Wm(t)[
m∑

x=0

αx

(x)!(m − x)!
− α

m∑
y=0

αm−y

(m − y)!(y)!
]

(5)

Substitute y with m − x, where x = 0, 1, 2, . . . , m-1, m and y = m,
m-1, . . . , 2, 1, 0.

(5) = W ′(t)Wm(t)[
m∑

x=0

αx

(x)!(m − x)!
(1 − α)] < 0 , since α > 1.

Case 2: let i + j be equal to arbitrary m = k − 1 + a, k − 1 ≤

m ≤ 2k − 3 and 0 ≤ a ≤ k − 2.

(4) = W ′(t)W k−1+a(t)[
αk−1

(k − 1)!a!
+

αk−2

(k − 2)!(a + 1)!
+ · · ·

+
αa+2

(a + 2)!(k − 3)!
+

αa+1

(a + 1)!(k − 2)!
]

− αW ′(t)W k−1+a(t)[
αa

(k − 1)!a!
+

αa+1

(k − 2)!(a + 1)!
+ · · ·

+
αk−3

(a + 2)!(k − 3)!
+

αk−2

(a + 1)!(k − 2)!
]
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= W ′(t)W k−1+a(t)[
k−2−a∑
x=0

αk−1−x

(k − 1 − x)!(a + x)!

− α

k−2−a∑
y=0

αa+y

(k − 1 − y)!(a + y)!
]

(6)

Substitute y with k − a − x − 2, where x = 0, 1, 2, . . . , k − 3 −

a, k − 2 − a and y = k − 2 − a, k − 3 − a, . . . , 2, 1, 0

(6) = W ′(t)W k−1+a(t)[
k−2−a∑
x=0

αk−1−x

(k − 1 − x)!(a + x)!

−

k−2−a∑
x=0

αk−1−x

(k − 2 − x)!(a + x + 1)!
]

= W ′(t)W k−1+a(t)

× [

k−2−a∑
x=0

(k − 2 − x)!(a + 1 + x)! − (k − 1 − x)!(a + x)!
(k − 1 − x)!(a + x)!(k − 2 − x)!(a + x + 1)!

× αk−1−x
]

(7)

We have total k−1−a number of terms in the above geometric
summation.

First, let us consider when k − 1 − a is even. Then,

(7) = W ′(t)W k−1+a(t)[
(a + 1)!(k − 2)! − (a)!(k − 1)!
(a + 1)!(k − 2)!(a)!(k − 1)!

αk−1

+
(a + 2)!(k − 3)! − (a + 1)!(k − 2)!
(a + 2)!(k − 3)!(a + 1)!(k − 2)!

αk−2

+ · · · +
( a+k−1

2 )!( k+a−1
2 )! − ( a+k−3

2 )!( k+a+1
2 )!

( a+k−1
2 )!( k+a−1

2 )!( a+k−3
2 )!( k+a+1

2 )!
α

k+a+1
2

+
( a+k+1

2 )!( k+a−3
2 )! − ( a+k−1

2 )!( k+a−1
2 )!

( a+k+1
2 )!( k+a−3

2 )!( a+k−1
2 )!( k+a−1

2 )!
α

k+a−1
2

+ · · · +
(k − 2)!(a + 1)! − (k − 3)!(a + 2)!
(k − 2)!(a + 1)!(k − 3)!(a + 2)!

αa+2

+
(k − 1)!(a)! − (k − 2)!(a + 1)!
(k − 1)!(a)!(k − 2)!(a + 1)!

αa+1
].

After combining like terms, above equation turns to be:

(7) = W ′(t)W k−1+a(t)

× [

k−a−3
2∑

x=0

(k − 2 − x)!(a + 1 + x)! − (k − 1 − x)!(a + x)!
(k − 1 − x)!(a + x)!(k − 2 − x)!(a + x + 1)!

× (αk−1−x
− αa+1+x)]

< 0 , since 0 ≤ a ≤ k − 2 and α > 1.

Now, let us consider when k − 1 − a is odd. It follows that

(7) = W ′(t)W k−1+a(t)[
(a + 1)!(k − 2)! − (a)!(k − 1)!
(a + 1)!(k − 2)!(a)!(k − 1)!

αk−1

+
(a + 2)!(k − 3)! − (a + 1)!(k − 2)!
(a + 2)!(k − 3)!(a + 1)!(k − 2)!

αk−2

+ · · · +
( a+k−2

2 )!( k+a
2 )! − ( a+k−4

2 )!( k+a+2
2 )!

( a+k−2
2 )!( k+a

2 )!( a+k−4
2 )!( k+a+2

2 )!
α

k+a+2
2

+
( a+k

2 )!( k+a−2
2 )! − ( k−2+a

2 )!( k+a
2 )!

( a+k
2 )!( k+a−2

2 )!( k−2+a
2 )!( k+a

2 )!
α

k+a
2

+
( a+k+2

2 )!( k+a−4
2 )! − ( k+a

2 )!( k+a−2
2 )!

( a+k+2
2 )!( k+a−4

2 )!( k+a
2 )!( k+a−2

2 )!
α

k+a−2
2

+ · · · +
(k − 2)!(a + 1)! − (k − 3)!(a + 2)!
(k − 2)!(a + 1)!(k − 3)!(a + 2)!

αa+2

+
(k − 1)!(a)! − (k − 2)!(a + 1)!
(k − 1)!(a)!(k − 2)!(a + 1)!

αa+1
].

The geometric summation part of the above expression can be
decomposed into a geometric summation of all the terms in the
even case and an additional middle term of the odd-numbered
series. Thereby,

(7) = W ′(t)W k−1+a(t)

× [

k−a−4
2∑

x=0

(k − 2 − x)!(a + 1 + x)! − (k − 1 − x)!(a + x)!
(k − 1 − x)!(a + x)!(k − 2 − x)!(a + x + 1)!

× (αk−1−x
− αa+1+x)]

+
( k+a

2 )!( k+a−2
2 )! − ( k−2+a

2 )!( k+a
2 )!

( k+a
2 )!( k+a−2

2 )!( k−2+a
2 )!( k+a

2 )!
α

k+a
2

= W ′(t)W k−1+a(t)

× [

k−a−3
2∑

x=0

(k − 2 − x)!(a + 1 + x)! − (k − 1 − x)!(a + x)!
(k − 1 − x)!(a + x)!(k − 2 − x)!(a + x + 1)!

× (αk−1−x
− αa+1+x)]

< 0 , since 0 ≤ a ≤ k − 2 and α > 1.

Thus,
d[

∑k−1
j=0

Wj(t)
j!∑k−1

j=0
Rj(t)
j!

]

dt is always < 0, for R(t) = αW (t). Following

Theorem 1, we conclude that correct responses are stochastically
faster than incorrect ones in the proportional Gamma model. □

As intimated earlier, the Smith and Van Zandt (2000) result on
the conditional means is imposed by Theorem 3.

Corollary 3.1. By the hierarchy of stochastic dominance relation-
ships (see Townsend, 1990), it follows from Theorem 3 that the Smith
and Van Zandt (2000) result follows immediately.

Proof. Obvious. □

Moreover, ordinary Poisson counting models and their paired
Gamma processing time distributions must also obey the impli-
cations of Theorem 3.

Corollary 3.2. Since race models constructed from ordinary Gamma
distributions, with one rate for ‘rights’ and another for ‘wrongs’ and
rate for ‘rights’ > rate for ‘wrongs’, are special cases of proportional
rates, inhomogeneous Poisson models, it follows that ‘rights’ are
stochastically faster than ‘wrongs’ in the sense manifested above.

Proof. Obvious. □

In order to offer a slightly less prosaic example of a propor-
tional rates, inhomogeneous Gamma race model let R(t) = at and
W (t) = bt where a and b are rate coefficients and let a > b > 0.
Evidently, α =

a
b > 1. Fig. 4a shows densities given a = 4, 10

and b = 2, which leads to α = 2, 5, respectively. Fig. 4b shows
ratios of hazard functions r(t) for each α. And Fig. 4c illustrates
the differences of conditioned cdfs: P(T ≤ t|R) - P(T ≤ t|W ),
revealing their predicted dominance relationships.

3. Do inhomogeneous Poisson models exist that can predict
faster wrongs than rights?

We do not have a complete solution to this intriguing ques-
tion. It would be pleasant to find an inhomogeneous, and non-
proportional-rates Poisson pair of counters that, violating one or



J.T. Townsend and Y. Liu / Journal of Mathematical Psychology 97 (2020) 102360 9

Fig. 4. (a) Densities of RTs for ‘right’ and ‘wrong’ channels, given a = 4, 10 and b = 2. (b) Decreasing ratios of hazard functions for α = 2 (a = 4) and 5 (a = 10).
(c) Differences of conditional cdfs P(T ≤ t|R) − P(T ≤ t|W ) are above 0 for t > 0, suggesting stochastically faster ‘rights’ than ‘wrongs’ for both α values.

more of the attendant axioms to Theorem 3, will always yield
stochastically faster wrongs than rights. We so far have not found
such a case.

However, the following example produced from the time-
varying Poisson race model at least demonstrates the existence of
a race of inhomogeneous Poisson counters which engender faster
wrongs than rights for some values of t . In this example, the
time-varying rate parameters of ‘right’ and ‘wrong’ are defined
separately and are no longer proportional to each other. Results
show that wrongs are stochastically faster than rights for the
faster processing time but rights are faster for slower times.

Example. Let us still assume that the system follows a time-
varying Poisson counting model with R(t) = 7t+5, W (t) = 2t+4,

and k = 6. Following Eqs. (1) and (2), we have

gW (t) =
(2t + 4)52e−(2t+4)

5!

gR(t) =
(7t + 5)57e−(7t+5)

5!

and

GW (t) =

5∑
j=0

(2t + 4)j

j!
e−(2t+4)

GR(t) =

5∑
j=0

(7t + 5)j

j!
e−(7t+5)
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We used Wolfram Mathematica to approximate the probability of
being correct or wrong for this example. The probability of being
correct, P(R) =

∫
∞

0 gR(t)GW (t)dt =
(1527194572016669)
(80647217731665)e3

≈ 0.9428.
The probability of being wrong, P(W ) =

∫
∞

0 gW (t)GR(t)dt =
(144158031169111)

(179216039403700)e3
≈ 0.04005.

The correspondent ratio of hazard (Eq. (3)) shown in Fig. 5a
is non-monotonic (it increases with small t and then decreases
with large t).

Now, we compare the processing time cumulative distribu-
tions conditional on correct and wrong responses, that is P(T ≤

t|R) =

∫ t
0 gR(t ′)GW (t ′)dt ′

P(R) vs. P(T ≤ t|W ) =

∫ t
0 gW (t ′)GR(t ′)dt ′

P(W ) at different
values of t . As indicated in Fig. 5b, the difference between the
cumulative processing time distribution conditional on correct
responses is less than that of wrong response at small t , proving
that correct responses are slower than incorrect ones with small t .
Yet conditional cumulative processing time distribution of correct
responses is larger than that of incorrect ones with larger t ,
showing that correct responses are faster than incorrect ones for
large t . These observations are consistent with our theoretical
predictions following Theorems 2 and 3.

4. Discussion

Race models can be classified as descriptive, meaning that the
processing time distributions are defined directly on finishing
times and there is no processing state–space for the channels.
Contrarily, state–space race models assume each channel pos-
sesses a state–space which demarcates incremental accumulation
of evidence for its associated decision and consequent response.
For instance, Smith and Ratcliff (2009) developed a dual diffu-
sion model that jointed these two aspects together. This model
follows a race structure for decision process but involves sep-
arate Ornstein–Uhlenbeck diffusion process for each decisional
accumulator.

Probability distributions for processing times can be compared
via their means, medians or other more powerful characteristics
such as order of their cumulative distribution functions, hazard
functions and so on (Townsend, 1990). We thereby used such
notions to beneficial effect in the present inquiry. We assumed
the hazard function for ‘rights’ to be always greater than that for
‘wrongs’, in the class of descriptive race models. That is, hR(t) >
hW (t). This rule implies that their respective cumulative distri-
bution functions are ordered as are their means and medians.
We, and apparently many other cognitive-process modelers have
harbored the belief that because independent race models have
to predict that the likelihood of a ‘right’ response must be larger
than 0.5, that ‘rights’ must be inherently faster than ‘wrongs’. This
intuition is in line with the rigorous proof by Smith and Van Zandt
(2000) that for the class of inhomogeneous Poisson counter mod-
els, as long as the rates are proportional, the expected processing
time for ‘rights’ is indeed quicker than that for ‘wrongs’.

But we emphasized early on, that this does not imply that
‘right’ decisions (with time conditional on being ‘right’) are nec-
essarily faster than ‘wrong’ decisions (time conditional on be-
ing ‘wrong’). That is, the almost ubiquitous intuition mentioned
above is mistaken. This realization led us to explore the actual
distributions conditional on being ‘right’ vs being ‘wrong’. Our
current investigation demonstrates that the canonical intuition
is incorrect if applied to the larger classes, firstly of descriptive
race models, defined only in terms of their hazard functions and
secondly of inhomogeneous Poisson counter models which do not
necessarily obey the proportional rates dictum.

As proved in Theorem 1, a broad class of race models can
produce either faster ‘rights’ or faster ‘wrongs’, depending on the
monotonicity of their hazard function ratios. We examined these

Fig. 5. (a) Non-monotonic ratio of ‘right’ hazard function over ‘wrong’ hazard
function. (b) Difference between the cumulative processing time distributions
conditional on ‘rights’ vs. ‘wrongs’. With small ti , differences are negative
indicating stochastically faster ‘wrongs’ than ‘rights’; whereas with large ti ,
differences are above zero suggesting stochastically faster ‘rights’ than ‘wrongs’.

findings with a class of time-varying Poisson counting models
in Theorems 2 and 3 and furthermore illustrated an example
where faster ‘wrongs’ can be actually produced, at least at early
times. Finally, with regard to this venture, the important question
arises as to whether there exist inhomogeneous Poisson counting
race models which induce ‘wrongs’ that are inevitably faster than
‘rights’ at our strong stochastic level. So far, we have not discov-
ered such a model but we suspect they exist. We did uncover an
example which for small (fast) times, does elicit faster ‘wrongs’
but instead produces faster ‘rights’ than ‘wrongs’ for long times.
We hope our readers may solve this open problem and thereby
discover inhomogeneous Poisson race models where the ‘wrongs’
are always faster than ‘rights’.

In a slightly different direction, it may be intriguing to learn
whether a state–space-based accrual halting model which em-
ploys monotonic increasing accruals, like our general Poisson
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counters, or has trajectories which can rise and fall before absorp-
tion, makes a fundamental difference in matters like our ratio of
hazard functions, or not. It would evidently be useful to have and
hand in hand analogous (to our results) basic, canonical results for
other classes of models, such as more general diffusion models,
the linear ballistic accumulation model (Brown & Heathcote, 2008)
and so on. The only such characteristic of which we are aware,
is the classic prediction of the Wiener diffusion and its close
associates (e.g., the sequential probability ratio test model of
Wald, 1947) that rights and wrongs are equally fast. An associated
challenge for those models relying on probability mixtures of
rates and/or criteria, is how to experimentally falsify these as-
sumptions as opposed to simply enjoying their extra complexity
in a more opportunistic way.

We view the questions posed in the present inquiry as
concerning fundamental issues in human cognition. They com-
plement other recent theoretical investigations into parallel pro-
cessing systems. For instance, consider standard parallel models
vs. standard serial models. Standard parallel models assume in-
dependent parallel processing durations while standard serial
models assume independent successive durations and identically
distributed times as well. Standard serial models can predict
position effects through differing distributions on the processing
order. The simplest standard parallel models have identically
distributed channel processing times. However, this assumption
is often abrogated in order to allow parallel models to predict
position effects (e.g., Townsend & Ashby, 1983; Van Zandt &
Townsend, 1993).

We recently demonstrated that standard parallel models will
typically predict stochastically increasing intercompletion times
and standard serial systems will typically predict positively cor-
related total completion times (total completion time is defined
for each item by the time duration between the beginning of
processing and the instant of completion of that specific item,
whatever the architecture). Nonetheless, rather intriguingly, it
turns out that both systems are controlled by their individual
hazard functions (on channels, elements, stages, etc.) in the sense
that certain dramatic alterations in these hazard functions can
evoke the opposite kinds of behavior (Zhang, Liu, & Townsend,
2018; Zhang et al., 2019).

Other contemporary discoveries include foundational proper-
ties of mutually dependent (rather than independent) channels
in parallel process models and their predictions for method-
ologically powerful workload capacity functions (Algom & Fi-
tousi, 2016; Townsend, Liu, Zhang, & Wenger, 2020; Townsend &
Wenger, 2004). There is a corresponding line of effort on parallel
systems which are engaged in pattern classification types of
computation. This research has been focusing primarily on their
interactions (e.g., Musslick, Cohen, & Shenhav, 2019) and poten-
tial degradation thereby. We are hopeful that these up-to-now
rather disparate tracks of research may begin to cross-fertilize
each other.

Other future challenges, naturally, lie in the application to
real-data response time distributions. One application is to use
the ratio of hazard functions r(t) for model selection. If a race
model is chosen to account for empirically observed fast ‘rights’
or faster ‘wrongs’, then our current results ensure that the ra-
tio of hazard functions produced by that model must obey the
predicted monotonicity and therefore can rule out those that
disagree with the predicted patterns.

With regard to the empirical side of matters, it will be impor-
tant to learn first of all, if conditional dominance even holds at
the level of the conditional distribution functions. After all, there
was little at all known about stochastic dominance at different
levels of power in response time studies before our explorations
of these matters (Townsend, 1990; Townsend & Ashby, 1978;

Townsend & Nozawa, 1995). It turned out, rather to our surprise,
that ordinary kinds of data evinced rather remarkably strong
levels of dominance. Whether this turns out to be true for con-
ditional distributions as entertained here is an open question.
Even more dramatic would be a finding that ratios of hazard
functions could be monotonic, at least over reasonable durations
of response times. Hazard functions themselves are non-trivial to
estimate and their ratios as functions of time may be even more
challenging.
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